Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys
نویسندگان
چکیده
The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.
منابع مشابه
Application of Shape Memory Alloys in Seismic Isolation: A Review
In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملTRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC
Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...
متن کاملEFFECT OF ANODIC OXIDATION ON THE CORROSION BEHAVIOR OF NICKEL-TITANIUM SHAPE MEMORY ALLOYS IN SIMULATED BODY FLUIDS (SBF)
The effect of anodic oxidation of a NiTi shape memory alloy in sulfuric acid electrolyte on its surface characteristics was studied. Surface roughness was measured by roughness tester. Surface morphology was studied using optical microscopy (OM) and scanning electron microscopy (SEM). Corrosion behavior was specified by recording Potentiodynamic polarization cur...
متن کاملShape Memory Properties in Cu-Zn-Al Alloy
In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017